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Fluorescence correlation spectroscopy (FCS) has become an important and widely used technique
for many applications in physics, chemistry, and biology. The parameter most frequently addressed
by FCS is the diffusion of molecules in solution. Due to the highly non-linear connection between
the diffusion coefficient and a measured autocorrelation function, it is extremely difficult to analyse
the accuracy of the diffusion-coefficient determination in a FCS experiment. Here, we present a
simplified analysis based on some general maximum-likelihood considerations, and numerical result
are given for the dependence of the accuracy of the diffusion-coefficient determination on sample
concentration, brightness, and measurement time. Optimal concentration values for performing FCS
are found.
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INTRODUCTION

Fluorescence correlation spectroscopy (FCS) is a
relatively old technique, originally introduced by Elson,
Magde and Webb in the early seventies [1–3]. However,
it took nearly two decades until the technique has seen a
renaissance in single molecule spectroscopy (SMS) after
the development of new lasers with high beam quality
and temporal stability, low-noise single-photon detectors,
and high-quality microscope objectives with nearly per-
fect imaging quality at high numerical aperture. Achiev-
ing values of the detection volume within the range of a
few µm3 made the technique applicable for samples at
reasonably high concentrations (nM) and enabled suffi-
ciently short measurement times (minutes). An excellent
and extensive description of FCS can be found in [4,5]. In
FCS, the detected fluorescence intensity is correlated with
a time-shifted replica of itself at different values of time
shift (lag time). The result is the so-called autocorrelation
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function (ACF), i.e. the second-order correlation function
of the fluorescence intensity signal. The physical meaning
of the ACF is that it is proportional to the probability to
detect a photon at some later time (lag time) if there was
a detection event at time zero. This probability is com-
posed of two basically different terms: The two photons
detected at time zero and some later lag time can originate
from uncorrelated background or from different fluoresc-
ing molecules and therefore do not have any physical cor-
relation (provided there is no interaction of the different
fluorescing molecules). These events will contribute to a
constant offset of the ACF that is completely independent
on lag time t. Alternatively, the two photons originate from
one and the same molecule and therefore are physically
correlated, leading to a time-dependent component of the
ACF. Thus, the temporal behaviour of the ACF is solely
determined by the correlated contributions of individual
molecules. In this sense, FCS is a true SMS technique,
although the analysis is not explicitly identifying single
molecule detection events.

On different time scales, the temporal behaviour of
the autocorrelation function is determined by different
properties of the fluorescing molecules: On a nanosec-
ond time-scale, photon antibunching can be observed,
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reflecting the fact that directly after the emission of a
photon the molecule needs to get re-excited for being
able to emit the next photon, leading to a steep decrease
of the ACF towards short times. On a microsecond time
scale, the ACF is dominated by triplet state dynamics. If
excitation and/or detection are done through polarization
filters, the autocorrelation will also show contributions
from rotational diffusion dynamics of the molecules. On
a millisecond to second time-scale, the ACF shows a typ-
ical decay due to the lateral diffusion of the molecules
out of the detection region. Diffusion is also the process
most frequently addressed by FCS measurements. FCS
has been extensively used in numerous studies, of which
only few are cited here. FCS was used for studying dif-
fusion of molecules in homogeneous and heterogeneous
environment [6–8], intermolecular binding and reaction
kinetics [9–15], single molecule photophysics [16–24],
and conformational dynamics [25]. For recent reviews
see [26,27] and the book [28].

In spite of the importance of the subject, there are
only few papers which have dealt with matters of statisti-
cal accuracy in fluorescence fluctuation experiments. The
first fundamental study of the subject, shortly after the
report of the first experiments by Magde et al. [1], was
presented by Koppel [29]. Koppel’s calculations assumed
high fluorophore concentrations, corresponding to the ex-
perimental conditions of the time. Qian [30] extended
Koppel’s earlier work by considering a two-dimensional
Gaussian sample profile instead of the uniform spot of
Koppel’s theory, and also considering low fluorophore
concentrations. Kask et al. [31] presented a more general
theory of the signal-to-noise-ratio of a FCS measurement,
applicable to an arbitrary profile of the molecule detec-
tion function. Meseth et al. [32] studied the resolution of
a FCS measurement when more than a single fluoresc-
ing species is present. Finally, Wohland et al. [33] gave a
detailed analysis of the standard deviation of a FCS mea-
surement derived from Monte-Carlo simulations. In all
these papers, the emphasis was on deriving some general
measure of the standard deviation or signal-to-noise-ratio
of a FCS measurement.

The present paper focuses on a more specific ques-
tion: The accuracy of determining a diffusion coefficient
by FCS. The main reason why this question was not stud-
ied in detail before is the highly non-linear relationship
between the diffusion coefficient as extracted from a FCS
measurement and the original fluorescence intensity fluc-
tuations. This fact prevents an analytical analysis of the
accuracy of this determination. However, by considering
the much simplified question of how accurate a choice can
be made between only two possible diffusion coefficients,
it is possible to derive analytical estimates for the involved

error. This analysis can then be extended to obtain some
general estimates of the accuracy of determining diffusion
coefficients in dependence on fluorophore concentration,
fluorescence brightness, and measurement time.

THEORY

In an ideal FCS measurement, one records the num-
ber nj of detected fluorescence photons in consecutive
time bins, 1 ≤ j ≤ T , where T is the maximum number
of time bins (defining the measurement time), and calcu-
lates the ACF gt at different lag times t as

gt = 1

T − t

T −t∑
j=1

njnj+t . (1)

The standard approach of extracting a value for the diffu-
sion coefficient from such an ACF is to fit, by a non-linear
fitting routine like the Nelder–Mead simplex algorithm,
the infinite-time limit (T → ∞) of a model ACF against
the measured curve gt using the diffusion coefficient D
and the concentration c as the fit parameters. For sim-
plicity reasons, let us follow the standard assumption of
a three-dimensional Gaussian shape of the molecule de-
tection function (MDF) U(r), i.e. let us assume that the
probability to detect a photon when a molecule is located
at position r is proportional to

U (r) = κ exp

[
−2(x2 + y2)

a2
− 2z2

b2

]
, (2)

where a and b are two characteristic parameters describing
the MDF, κ is a factor accounting for the overall light
detection efficiency of the measurement system as well as
the molecules’ absorption cross-section and fluorescence
quantum yield (fluorescence brightness), and x, y and z
are Cartesian coordinates, with z along the optical axis.
The infinite-time limit of the ACF is then given by [4,5]

ḡt = π 3/2κ2a2b

8

[
c

(1 + 4Dt/a2)
√

1 + 4Dt/b2
+ c2π 3/2a2b

]
,

(3)

with c being the fluorophore concentration in the sample
solution. This curve serves as the fit function that is fitted
against the measured gt , yielding values for the diffusion
coefficient D and concentration c. It is obvious that, in
such a procedure, the connection between the originally
measured fluorescence intensities, nj , and the finally ob-
tained value of the diffusion coefficient, D, is highly non-
linear, which makes an exact statistical analysis of the
accuracy of determining D in dependence on measure-
ment time, sample concentration or molecule brightness
(i.e. the value of κ) extremely difficult.
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To simplify matters, we will proceed in a different
way. Firstly, instead of fitting an unknown diffusion coef-
ficient, one assumes that one has only to choose between
two possible diffusion coefficients, D0 and D, and one asks
whether a measured ACF corresponds more to a model
ACF based on the value D0 or one based on D. This can
be done by calculating a likelihood value M according to

M =
N∑

k=1

mk gk =
N∑

k=1

mk

1

T − k

T −k∑
j=1

nj nj+k (4)

where N is the maximum lag time considered, and mk

is a suitably chosen function so that M is positive if the
measured ACF gk resembles more the model ACF based
on diffusion coefficient D0, and negative if gk resembles
more the model ACF based on diffusion coefficient D. A
suitable candidate for mk is given by

mj = ln

[
ḡj (D0)

ḡj (D)

]
(5)

which would be the mathematically optimal choice (a
maximum-likelihood estimator) if the values of the ACF
follow a Poisson statistics with mean values ḡj . Of course,
this is far from being the case (the ḡj are not mean values
of stochastic variables with Poisson statistics but the val-
ues of the ACF at infinite measurement time) – nonethe-
less Eq. (5) yields still a good function for making a
choice between two possible diffusion coefficients (see
also Results and Discussion section).

Thus, for making a decision between D0 and D, one
measures the fluorescence intensities nj , calculates the
ACF gt , then the likelihood value M, and if M is larger
than zero, one chooses D0 as the correct diffusion coeffi-
cient, otherwise D. If the true diffusion coefficient of the
sample is D0, then the frequency of choosing D instead
of D0 corresponds to the error err(D|D0) of determining
the wrong diffusion coefficient in this two-value decision
procedure. By mapping this error err(D|D0) for all possi-
ble values of D at fixed D0, one obtains some analogue of
a probability distribution of assigning the wrong diffusion
coefficient to a measured ACF originating from a sample
with diffusion coefficient D0. The width of this distribu-
tion is a measure of the accuracy with which a diffusion
coefficient can be determined. Although this kind of rea-
soning does not give the direct probability distribution for
the diffusion coefficient, it has the enormous advantage
to being amenable to an exact statistical analysis: because
there is a polynomial connection (second order) between
M and the nj , the moments of M can be calculated exactly,
on the basis of the Poisson statistics of the nj (Poisson
photon detection statistics). This allows an exact calcu-
lation of the distribution err(D|D0), the width of which

will be taken as a measure of the accuracy to determine a
correct value of the diffusion coefficient.

In a first step, the first and second moments of the
probability distribution of the likelihood value M are de-
termined. For doing that, M is rewritten as a quadratic
form of the variables nj :

M = 1

2

∑
j,k

njαjknk, (6)

with the matrix α defined by

αjk ≡ α|j−k| = m|j−k|
T − |j − k| for 1 ≤ |j − k| ≤ N,

else αjk = 0. (7)

Calculation of the first and second moments of the M-
distribution involves averaging over squares and double
squares of the variables nj , and assuming that the pho-
ton counts per time bin follow a Poisson statistics, these
averages are given by

〈njnk〉 =
〈

lim
{ε↓1}

(
εj

∂

∂εj

)(
εk

∂

∂εk

)
exp

[∑
p

(εp − 1)Ip

]〉

= 〈Ij Ik〉 + δjk〈Ij 〉 (8)

and

〈njnknrns〉 =
〈

lim
{ε↓1}

(
εj

∂

∂εj

)(
εk

∂

∂εk

)(
εr

∂

∂εr

)

×
(

εs

∂

∂εs

)
exp

[∑
p

(εp − 1)Ip

]〉
(9)

where the Ij are mean intensity values per time bin, and
the brackets on the r.h.s. denote averaging over all possi-
ble positions and paths of the diffusing molecules in the
sample. Taking into account that αjk = 0 when j = k, the
first moment of the M-distribution is thus given by

〈M〉 = 1

2

∑
j,k

α|j−k|〈Ij Ik〉. (10)

Analogously, but more tediously, one finds for the second
moment

〈M2〉 = 1

4

∑
j,k,r,s

〈αjkαrsnjnknrns〉

= 1

4


∑

j,k

2α2
|j−k|〈Ij Ik〉 + 4

∑
j,k,r

α|j−k|α|j−r|〈Ij IkIr〉

+
∑

j,k,r,s

α|j−k|α|r−s|〈Ij IkIrIs〉

 . (11)



418 Enderlein, Gregor, Patra, and Fitter

Of main interest is the case where the measurement
time is much larger than the maximum lag time of the
autocorrelation curve, i.e. where T 	 N . In that case, the
above expressions can be simplified, retaining only terms
in the leading order of T −1:∑

j,k

α
µ

|j−k|〈Ij Ik〉 ≈ 2

T µ

∑
j<k

m
µ

k−j 〈Ij Ik〉

= 2

T µ−1

∑
u>0

mµ
u 〈I0Iu〉

4
∑
j,k,r

α|j−k|α|j−r|〈Ij IkIr〉 ≈ 8

T 2

∑
j≤k≤r

(m|j−k|m|j−r|

+m|j−k|m|k−r| + m|j−r|m|k−r|)〈Ij IkIr〉

≈ 8

T

∑
u,v≥0

[(mu + mv)mu+v + mumv]〈I0IuIu+v〉

∑
j,k,r,s

α|j−k|α|r−s|〈Ij IkIrIs〉 ≈ 4

T 2

∑
j≤k≤r≤s

(mk−jms−r

+mr−jms−k + ms−jmr−k)〈Ij IkIrIs〉

≈ 4

T

∑
u,w,v≥0

(mumw + mu+vmv + w + mu+v + wmv)

×〈I0IuIu+vIu+v+w〉
so that we obtain the final expressions for the mean and
mean square of M as

〈M〉 ≈
∑
u>0

mu〈I0Iu〉

and

〈M2〉 ≈ 1

T

[∑
u≥1

m2
u〈I0Iu〉 + 2

∑
u,v≥1

[(mu + mv)mu+v

+mumv]〈I0IuIu+v〉
+
∑

u,v,w≥1

(mumw + mu+vmv+w + mu+v+wmv)

×〈I0IuIu+vIu+v+w〉
]

In a second step, the obtained first and second moments
of the M-distribution are used to approximate it by a
Gaussian distribution with mean 〈M〉 and mean square
deviation δM = 〈M2〉 − 〈M〉2,

P (M,D|D0) ≈ 1√
2π〈δM2〉

exp

[
− (M − 〈M〉)2

2〈δM2〉
]

,

allowing immediately the calculation of the error
err(D|D0) as

err(D|D0) ≈
∫ 0

−∞
dM

1√
2π〈δM2〉

exp

[
− (M − 〈M〉)2

2〈δM2〉
]

≈ 1 − erf

(
〈M〉√

2〈δM2〉

)
(12)

The dependence of this expression on D and D0 is implicit
via the dependence of the M-defining matrix αjk on D and
D0.

It remains to calculate the averages of the products of
the mean intensities Iu. Consider the simple average 〈Iu〉.
The mean detected fluorescence intensity is the sum of
the mean fluorescence intensities of all molecules in the
sample. The probability density to find the first molecule
at position r1, the second at r2, etc. is given by the product∏

n (V −1drn), where V is the total sample volume. The
average 〈Iu〉 is calculated by averaging over all possible
molecule positions, i.e.

〈Iu〉 ≡ 〈I 〉 =
(∏

n

1

V

∫
V

drn

)(∑
n

U (rn)

)

= c

∫
V

dr U (r) =
(π

2

)3/2
cκa2b.

In a similar way, averages of the higher-order products of
the intensities are derived, additionally taking into account
that the probability to find the same molecule at position
r2 at time t2 when it was at position r1 at time t1 is given
by Green’s function G(r2 − r1, t2 − t1) of the diffusion
equation,

G(r2 − r1, t2 − t1) = 1

[4πD(t2 − t1)]3/2
exp

[
− (r2 − r1)2

4D(t2 − t1)

]
.

Using this function, the so-called one-particle k-point cor-
relators can be introduced

Zk(t1 . . . , tk) =

 k∏

j=0

∫
drj




 k∏

j=1

U (rj ) G(rj − rj−1, tj )


U (r0),

through which the higher-order product averages are
expressed as

〈I0Iu〉 = κ2
[
cZ1(u) + c2Z2

0

]
,

〈I0IuIu+v〉 = κ3 {cZ2(u, v) + c2Z0[Z1(u) + Z1(v)

+ Z1(u + v)] + c3Z3
0

}
,

〈I0IuIu+vIu+v+w〉 = κ4
{
cZ3 (u, v,w)

+ c2Z0[Z2(u, v) + Z2(u, v + w)
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+Z2(u + v,w) + Z2(v,w)]

+ c2[Z1(u)Z1(w) + Z1(u + v)

×Z1(v + w) + Z1(u + v + w)

×Z1(v)] + c3Z2
0[Z1(u) + Z1(v)

+Z1(w) + Z1(u + v) + Z1(v + w)

+Z1(u + v + w)] + c4Z4
0

}
.

By inserting the explicit functional form of the MDF
U (r) into the integrals defining the correlators Zk , these
are calculated to be

Zk(t1, . . . , tk) = ζ 2
k (a, t1, . . . , tk)ζk(b, t1, . . . , tk)

with the ζk defined by

ζ0(ξ ) =
√

π

2
ξ,

ζ1(ξ, t) =
√

π

2

ξ√
1 + 4Dt/ξ 2

,

ζ2(ξ, t1, t2) =
√

π

2

ξ√
3 + 16 D(t1 + t2)/ξ 2 + 64 D2t1t2/ξ 4

,

ζ3(ξ, t1, t2, t3)

=
√

π

8

(
ξ

/√
1 + 2 D(3t1 + 4t2 + 3t3)/ξ 2 + 64 D2

× (t1t2 + t1t3 + t2t3)/ξ 4 + 128 D3t1t2t3/ξ
6

)
.

RESULTS AND DISCUSSION

Although the derived expressions seem to be rather
complex, some general conclusions can be drawn by an-
alyzing the dependence of err(D/D0) on measurement
time T, molecule brightness κ , and concentration c. The
dependency on measurement time is most easily ana-
lyzed. Careful inspection of the found expression for
δM = 〈M2〉 − 〈M〉2 reveals that it decays as T −1. This
is due to the fact that in the expression of 〈M2〉, only
the sum involving the term mumw〈I0IuIu+vIu+v+w〉 yields
a contribution independent on T which is exactly can-
celled by 〈M〉2 when calculating δM . Thus, the error
err(D/D0) falls off as 1 − erf (const × T ). The depen-
dence of err(D/D0) on concentration c and brightness
κ is more involved. Inspection of the expressions found
for the 〈I 〉, 〈I0Iu〉 etc. shows that 〈M〉 and δM depend
on c and κ in a complex polynomial way (up to fourth
order in each variable). As a numerical example, let us

consider a sample containing fluorescent molecules with
diffusion coefficient of 10−5 cm2/s. The characteristic di-
mensions of the 3D-Gaussian detection volume are set to
be a = 0.5 µm and b = 2 µm. Figure 1 shows different
curves of err(D/D0) for increasing values of measurement
time T at fixed concentration c = 1/µm3 (1.66 × 10−9 M)
and brightness κ = 103 photons/s. It should be noted that
the distributions shown in Fig. 1 are nearly symmetric
around the value D0 on a logarithmic scale of D, i.e. it
is a function of log D/D0 only. This shows that only the
ratio between two diffusion coefficients is important for
the accuracy of distinguishing between them. It is reason-
able to define the “width” of the distributions err(D/D0)
as w = 0.5(Dmax/D0 + D0/Dmin), where Dmin and Dmax

are the two values of D where the distribution err(D/D0)
is equal to some constant value, e.g. 0.1 (10% error, see
dotted line in Fig. 1). This width can be taken as a measure
of the relative accuracy of determining the diffusion coef-
ficient from a measured ACF. Figure 2 shows the depen-
dence of w on measurement time for four different values
of brightness κ at fixed concentration c = 1/µm3. As can
be seen, after a fast fall-off of w at small measurement
times, it approaches its minimum possible value w = 1
asymptotically slowly with increasing measurement time.
Even increasing κ only slightly improves that situation:
The curve for κ=104 photons/s is already indistinguish-
able from the asymptotic curve for κ → ∞.

To visualize the dependency of the accuracy of the
diffusion-coefficient determination on all three parame-
ters c, κ and T in a most compact way, the following
particular question will be studied: What is the minimum
measurement time T at given concentration c and bright-
ness κ for which the error to make the wrong decision be-
tween the correct value of the diffusion coefficient D0 =
103 µm2/s and its half value D = D0

/
2 = 500 µm2/s is

less than 10%, i.e. err(D/2|D0) ≤ 0.1 (see broken line in
Fig. 1)? The choice D = D0/2 and err = 0.1 is completely
arbitrary and any other value could also be considered.
However, the principal dependence of the measurement
time for achieving a given accuracy on concentration and
brightness will be similar. Figure 3 shows different curves
which correspond, from top to bottom, to increasing val-
ues of brightness κ as indicated in the legend right to the
figure. A nearly identical figure results if one chooses for
D a doubled value of D0 instead of its half, due to the
fact that err(D/D0) is approximately a function of log
D/D0 only. In Fig. 3, curves are shown only down to a
measurement time value of 100 s (dotted line): below that
value, the basic assumption that the measurement time
is much larger than the maximum lag time is no longer
valid. The most striking feature in Fig. 3 is the strong
convergence of all curves to a limiting envelope towards
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Fig. 1. Error distribution for distinguishing between the correct diffusion coefficient D0 =
103 µm2/s and a wrong value D (horizontal axis) for sample concentration of c = 1 /µm3 and
brightness of κ = 103 photons/s. Different curves correspond to different measurement times in
seconds (see legend): The larger the measurement time, the narrower the error function err(D|D0).

Fig. 2. Dependence of w = 0.5(Dmax/D0 + D0/Dmin) on measurement time T, where Dmin and Dmax are
the two values of D where err(D|D0) = 0.1 (see also previous figure). Shown are four curves, from top
to bottom, for increasing values of κ as indicated by the legend where numbers are given in photons/s.
Sample concentration is 1/µm3.
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Fig. 3. Dependence of measurement time on concentration for different values of molecule brightness as
indicated in the legend where numbers are given in photons/s. Shown are contour lines where err(D/2|D0) =
0.1; D0 is set to 103 µm2/s, the long and short axis of the 3D-Gaussian detection volume are a = 0.5 µm and
b = 2 µm. Curves are shown only for measurement time values T larger than 100 s (dotted line), where the
assumption applies that the measurement time is much larger than the maximum lag time.

high concentration values, which quickly goes beyond
any upper limit. Increasing the fluorescence brightness
of the molecules does not improve much the accuracy
when measuring at high concentrations. In contrast, to-
wards low concentration values, increasing the brightness
can dramatically enhance the accuracy. This can be under-
stood recalling that only photons originating from one and
the same molecule contribute to the non-uniform part of
the ACF. With increasing brightness, the ACF can be effi-
ciently sampled over an ever increasing volume, because
even molecules far away from the center of the detection
volume have a chance to contribute to the ACF. However,
this does not apply for high concentrations, where at ev-
ery time already more than a single molecule is present in
the detection volume. With increasing concentration, the
amplitude of the non-uniform part of the ACF, which is
generated solely by photon pairs coming from one and the
same molecules and is proportional to concentration c, is
becoming increasingly smaller with respect to the uniform
part of the ACF, which is caused by photon pairs coming
from different molecules and is thus proportional to the
square of the concentration c2. Because the determination
of the diffusion coefficient lives exclusively on the non-

uniform part of the ACF, its accuracy deteriorates quickly
when c exceeds some optimum value: beyond that value
the ACF becomes increasingly dominated by its uniform
part which rises proportional to c2. Although it was well
known, from the very beginning of FCS, that there has
to be an optimum concentration for FCS measurements,
Fig. 3 presents the first published calculation of this value,
showing also its shift towards smaller concentration values
with increasing brightness κ . A signal-to-noise analysis as
presented in [31] does not yield explicit values for that op-
timum concentration: The signal-to-noise ratio enhances
with increasing concentration reaching a plateau at high
concentration (cf. Fig. 1 in [31]), giving no information
about the quality of a FCS measurement in the sense of
how accurate a diffusion coefficient can be extracted from
a measured ACF.

Although Fig. 3 was calculated for the special case of
correctly identifying D0 against D = D0/2 with 10% er-
ror rate, qualitatively similar figures occur if one chooses
some other value for D, or asks for a different error
threshold. Choosing different values for these parame-
ters will mainly rescale the vertical axis of measurement
time, but will not change significantly the dependence on
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concentration. The main features of an upper concentra-
tion limit where the accuracy of the diffusion-coefficient
determination breaks rapidly down, and of the strong en-
hancement of accuracy with increasing brightness values
at small concentration values, will not change.
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